Wavelets on graphs via spectral graph theory
نویسندگان
چکیده
منابع مشابه
Wavelets on Graphs via Spectral Graph Theory
We propose a novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling using the graph analogue of the Fourier domain, namely the spectral decomposition of the discrete graph Laplacian L. Given a wavelet generating kernel g and a scale parameter t, we define the scaled wavelet operator T...
متن کاملSpectral Graph Theory, Expanders, and Ramanujan Graphs
We will introduce spectral graph theory by seeing the value of studying the eigenvalues of various matrices associated with a graph. Then, we will learn about applications to the study of expanders and Ramanujan graphs, and more generally, to computer science as a whole.
متن کاملOn Spectral Analysis of Directed Graphs with Graph Perturbation Theory
The eigenspace of the adjacency matrix of a graph possesses important information about the network structure. Recent works showed the existence of line orthogonality patterns when nodes are projected into the eigenspaces of graphs by either SVD or regular eigen decomposition. Further study proved why such phenomena hold true for simple graphs using matrix perturbation theory and several graph ...
متن کاملWavelets on Graphs via Deep Learning
An increasing number of applications require processing of signals defined on weighted graphs. While wavelets provide a flexible tool for signal processing in the classical setting of regular domains, the existing graph wavelet constructions are less flexible – they are guided solely by the structure of the underlying graph and do not take directly into consideration the particular class of sig...
متن کاملLectures on Spectral Graph Theory
Contents Chapter 1. Eigenvalues and the Laplacian of a graph 1 1.1. Introduction 1 1.2. The Laplacian and eigenvalues 2 1.3. Basic facts about the spectrum of a graph 6
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2011
ISSN: 1063-5203
DOI: 10.1016/j.acha.2010.04.005